Effect of dehydroepiandrosterone on hypoxic pulmonary vasoconstriction: a Ca2+-activated K+-channel opener

Abstract
In the present study, we investigated the effects of the naturally occurring hormone dehydroepiandrosterone (DHEA) on hypoxic pulmonary vasoconstriction (HPVC) in isolated ferret lungs and on K+ currents in isolated and cultured ferret pulmonary arterial smooth muscle cells (FPSMCs). Severe alveolar hypoxia (3% O2-5% CO2-92% N2) caused an initial increase in pulmonary arterial pressure (Ppa) that was followed by a reversal in pulmonary hypertension. Maintaining alveolar hypoxia caused a sustained secondary increase in Ppa. Pretreating the lungs with the K+-channel inhibitor tetraethylammonium (TEA) caused a small increase in baseline Ppa, potentiated HPVC, and prevented the reversal of HPVC during the sustained alveolar hypoxia. Treating the lungs with DHEA caused a near-complete reversal of HPVC in control lungs and in lungs that were pretreated with TEA. DHEA also reversed the KCl-induced increase in Ppa. In FPSMCs, DHEA caused an adenosine 3′,5′-cyclic monophosphate- and guanosine 3′,5′-cyclic monophosphate-independent increase in activity of the Ca2+-activated K+(KCa) current. In a cell-attached configuration, DHEA caused a mean shift of −22 mV in the voltage-dependent activation of the KCa channel. We conclude that DHEA is a novel KCa-channel opener of the pulmonary vasculature.