Polymer conformational statistics. I. Probability distribution
- 15 February 1973
- journal article
- research article
- Published by AIP Publishing in The Journal of Chemical Physics
- Vol. 58 (4) , 1553-1558
- https://doi.org/10.1063/1.1679394
Abstract
The probability distributionP(R) of the end‐to‐end distance is studied for the rotational‐isomeric model of polymer chains. A Monte Carlo investigation provided reliable numerical data for P(R), which was then compared with results from two relatively analytic studies. The first of these, and by far the more complicated, was a steepest descent inversion of the characteristic function. This method was found to be more satisfactory, particularly for large R, than Hermite function expansions that have been used in the past. However for chains of N bonds the method fails, for N<40, to show the stiffness evident for small R. A second quite simple method was to maximize the entropy functional of P(R) subject to assigned 〈 R 2 〉 and 〈 R 4 〉 . The results for P(R) were in good agreement with Monte Carlo results down to N=12, and for all R.Keywords
This publication has 14 references indexed in Scilit:
- Polymer conformational statistics. II. Characteristic function of the rotational-isomeric modelThe Journal of Chemical Physics, 1973
- Configurational Averages for Chain Molecules: Higher Moments and Related QuantititesThe Journal of Chemical Physics, 1971
- Distribution Functions for Chain MoleculesThe Journal of Chemical Physics, 1969
- Moments of Chain Vectors for Models of Polymer ChainsThe Journal of Chemical Physics, 1969
- Simulation du mouvement brownien d’une chaine macromoléculaire par la méthode de Monte-CarloJournal de Chimie Physique et de Physico-Chimie Biologique, 1969
- Even Moments of the End-to-End Distance of Polymeric ChainsThe Journal of Chemical Physics, 1968
- On the shape and configuration of polymer moleculesProceedings of the Physical Society, 1965
- Monte Carlo Procedures for Generation of Nonintersecting ChainsThe Journal of Chemical Physics, 1962
- Monte Carlo Calculations on the Dynamics of Polymers in Dilute SolutionThe Journal of Chemical Physics, 1962
- Statistical Theory of Networks of Non-Gaussian Flexible ChainsThe Journal of Chemical Physics, 1952