Abstract
It is widely agreed that new enzymes evolve from existing ones through the duplication of genes encoding existing enzymes followed by sequence divergence. While evolution is an inherently random process, studies of divergently related enzymes have shown that the evolution of new enzymes follows one of three general routes in which the substrate specificity, reaction mechanism, or active site architecture of the progenitor enzyme is reused in the new enzyme. Recent developments in structural biology relating to divergently related (beta/alpha)8 enzymes have brought new insight into these processes and have revealed that conserved structural elements play an important role in divergent evolution. These studies have shown that, although evolution occurs as a series of random mutations, stable folds such as the (beta/alpha)8 barrel and structural features of the active sites of enzymes are frequently reused in evolution and adapted for new catalytic purposes.