Abstract
This paper comprehensively analyzes the relationship between space-vector modulation and three-phase carrier-based pulse width modulation (PWM). The relationships involved, such as the relationship between modulation signals (including zero-sequence component and fundamental components) and space vectors, the relationship between the modulation signals and the space-vector sectors, the relationship between the switching pattern of space-vector modulation and the type of carrier, and the relationship between the distribution of zero vectors and different zero-sequence signal are systematically established. All the relationships provide a bidirectional bridge for the transformation between carrier-based PWM modulators and space-vector modulation modulators. It is shown that all the drawn conclusions are independent of the load type. Furthermore, the implementations of both space-vector modulation and carrier-based PWM in a closed-loop feedback converter are discussed.

This publication has 21 references indexed in Scilit: