Is the nexus necessary for cell-to-cell coupling of smooth muscle?

Abstract
Electronmicroscopic study of electrically coupled smooth muscles was undertaken to determine the distribution of nexuses in various types of smooth muscle. The study revealed that while nexal structures were commonplace in some types of smooth muscle, they were very rare or absent in others, even though in some cases these cells were only a few nanometers distant from one another. The persistence in thin section of these structures in the main circular muscle of dog intestine after poor fixation, fixation under strain, cell shrinkage, and metabolic damage of various sorts seems to rule out the thesis that they are labile. The absence of nexuses in longitudinal muscle of dog intestine examined both by thin section and by freeze fracture suggests that in this tissue they are absent or very rarein vivo and cannot account for electrical coupling. Nexuses were discernible in thin sections of main circular muscle after a variety of experimental conditions of fixation. Metabolic inhibition orin vitro permanganate fixation partially destroyed nexal contacts. These procedures induced tissue, membrane apposition and an accompanying increase in the number of structures which resemble nexuses at low magnification (nexus-like structures). “Nexus-like” structures occurred in all smooth muscle fixed byin vitro permanganate associated with apposition of membranes and poor preservation of basement membrane. A technique ofin vitro permanganate fixation was developed which prevented tissue swelling; consequently “nexus-like” structures were absent in tissues so treated. The suggestion is made that some structures described in the literature as nexuses, following permanganate fixation, may represent “nexus-like” structures. The balance of evidence suggests that nexuses need not be present for electrical coupling of some smooth muscle cells, in which other types of cell-to-cell contacts must be invoked.

This publication has 53 references indexed in Scilit: