Conjugation of Ligands at the 5‘-End of CpG DNA Affects Immunostimulatory Activity

Abstract
Bacterial DNA and synthetic oligonucleotides containing unmethylated CpG dinucleotides (CpG DNA) activate the vertebrate immune system and promote Th1-like immune responses. Several CpG DNAs are currently being tested in clinical trials as either alone or in combination with vaccines, antibodies, and allergens separately or as conjugates for a number of disease indications including cancers, allergies, and asthma. In this paper, we show that conjugation of an oligonucleotide and a CpG DNA through their 5‘-ends (5‘-5‘-linked DNA) significantly reduces the immunostimulatory activity of the CpG DNA. In addition, we found that the reduction in immunostimulatory activity of 5‘-5‘-linked CpG DNA depends on the size of the oligonucleotide conjugated to CpG DNA. Conjugation of a smaller group or molecule, such as a phosphorothioate group, at the 5‘-end of CpG DNA has an insignificant effect on immunostimulatory activity. However, conjugation of a mononucleotide, tetra- or longer oligonucleotide or a fluorescein molecule to the 5‘-end of a CpG DNA (5‘-5‘-linked DNA) significantly suppresses the immunostimulatory activity of CpG DNA. Surprisingly, conjugation of an oligonucleotide or a ligand through the 3‘-end of CpG DNA (3‘-3‘-linked DNA) has an insignificant effect on immunostimulatory activity. Studies of cellular uptake and activation of transcription factor NF-κB in J774 cells using fluorescein-conjugated CpG DNAs suggest that the differences in the immune stimulation of 5‘- and 3‘-end-conjugated CpG DNAs is not as a result of differences in their cellular uptake properties. These results suggest that for optimal immunostimulatory activity, ligands should not be attached at the 5‘-end of the CpG DNA.

This publication has 13 references indexed in Scilit: