Unstraining paleomagnetic vectors: The current state of debate
- 25 August 1987
- journal article
- Published by American Geophysical Union (AGU) in Eos
- Vol. 68 (34) , 705-712
- https://doi.org/10.1029/eo068i034p00705-01
Abstract
One of the main goals of paleomagnetic studies is to produce evidence for ancient continent displacements and thus produce paleogeographical reconstructions of the earth in the geological past. To achieve this goal, paleomagnetists use the direction of remanent vectors as measured in rocks to derive latitudinal and azimuthal data, according to the model of the Earth magnetic field (EMF). One of the many difficulties faced by these researchers is the determination of whether the rock deformation may have altered the original paleomagnetic direction. If so, the paleomagnetists must correct the effect of such a deformation. Obviously, this aspect is of secondary importance in cratonic areas where beds lie flat or are gently folded, and in earlier times, most paleomagnetic studies were conducted in such areas. However, it now appears that we cannot avoid work within orogenic belts if we want to resolve geodynamic problems [Van der Voo and Channel, 1980]. It therefore became necessary to examine more carefully the interaction between magnetizations and deformation. During the last decade, several teams have conducted research efforts in this direction.Keywords
This publication has 28 references indexed in Scilit:
- Effect of progressive deformation on remanent magnetization of permian redbeds from the alpes maritimes (France)Published by Elsevier ,2003
- Strain reorientation of hematite and its bearing upon remanent magnetizationTectonics, 1986
- A magnetotectonic study of the Hercynian Montagne Noire (France)Tectonics, 1986
- A paleomagnetic study of tectonically deformed red beds of the Lower Glarus Nappe Complex, eastern SwitzerlandTectonics, 1986
- Effects of tectonic deformation on the remanent magnetization of rocksTectonics, 1986
- Passive rotation of hematite during deformation: a comparison of simulated and natural redbeds fabricsTectonophysics, 1986
- Comparison of quartz microfabric with strain in recrystallized quartziteJournal of Structural Geology, 1981
- The magnetic fabrics of some slates from the borrowdale volcanic group in the English Lake District and their correlations with strainsTectonophysics, 1980
- Paleomagnetism in orogenic beltsReviews of Geophysics, 1980
- Magnetic susceptibility anisotropy in the Cambrian slate belt of North Wales and correlation with strainTectonophysics, 1979