Relativistic and QED Corrections for the Beryllium Atom

Abstract
Complete relativistic and quantum electrodynamics corrections of order alpha(2) Ry and alpha(3) Ry are calculated for the ground state of the beryllium atom and its positive ion. A basis set of correlated Gaussian functions is used, with exponents optimized against nonrelativistic binding energies. The results for Bethe logarithms ln(k(0)(Be)=5.750 34(3) and ln(k(0)(Be+)=5.751 67(3) demonstrate the availability of high precision theoretical predictions for energy levels of the beryllium atom and light ions. Our recommended value of the ionization potential 75 192.514(80) cm(-1) agrees with equally accurate available experimental values.