Heterogeneity of lipid A: structural determination by carbon-13 and phosphorus-31 NMR of lipid A fractions from the lipopolysaccharide of Escherichia coli 0111

Abstract
Purified lipid A from Escherichia coli 0111 was fractionated by thin-layer chromatography, and seven major bands were studied by 13C and 31P NMR. All lipid A fractions except one had fatty acids, 3-hydroxytetradecanoic acid, 3-(acyloxy)tetradecanoic acid, and phosphate groups bonded to the diglucosamine backbone. The remaining fraction was shown to be phosphatidylethanolamine. The number of substituents found showed that in all fractions all sites available for C-acylation (C-3, C-4, and C-3'') and N-acylation (C-2 and C-2'') carried acylic substituents. The number, ranging from four to six, and type of ester-bound carboxylic acid residues as well as the number of phosphate groups differed among the fractions. The three fastest moving bands all had three unsubstituted hydroxy fatty acids and one phosphate group (C-4''), while the slower moving bands had four hydroxy fatty acids and two phosphate groups. Unsubstituted 3-hydroxytetradecanoic acid residues were amide-bound to the disaccharide in all but one of the fractions. In summary, the heterogeneity of E. coli 0111 lipid A is found to be a consequence of a variation of the number and composition of carboxylic acid residues and of varying phosphate content.

This publication has 15 references indexed in Scilit: