Data from Rapid Inhibition of Cancer Cell Growth Induced by Lentiviral Delivery and Expression of Mutant-Template Telomerase RNA and Anti-telomerase Short-Interfering RNA
Open Access
- 30 March 2023
- other
- Published by American Association for Cancer Research (AACR)
Abstract
In human cancers, telomeres are commonly maintained by elevated levels of the ribonucleoprotein enzyme telomerase, which contains an intrinsic templating RNA moiety (human telomerase RNA; hTER) and the core protein (human telomerase reverse transcriptase). We developed a lentiviral system for efficient overexpression of mutant-template human telomerase RNA (MT-hTer) to add mutant DNA to telomeres in cancer cells. We show that such MT-hTer overexpression rapidly inhibits cell growth and induces apoptosis in telomerase-positive precancerous or cancer cells but not in telomerase-negative cells. These rapid effects occurred independent of wild-type p53 and telomere length. Tumor growth and progression were significantly decreased in xenografts of human tumor cells overexpressing MT-hTers. Expression of a hairpin short-interfering RNA that specifically targeted the endogenous wild-type hTER template region, but spared the MT-hTers, also caused p53-independent cell growth inhibition and apoptosis, and when coexpressed with MT-hTer, synergistically killed cancer cells. Hence, anti-wild-type-hTER short-interfering RNA and MT-hTers may act through distinct pathways and, particularly in combination, represent a promising approach to anticancer therapies.Keywords
This publication has 0 references indexed in Scilit: