P-Glycoprotein Limits Oral Availability, Brain, and Fetal Penetration of Saquinavir Even with High Doses of Ritonavir
- 1 April 2001
- journal article
- Published by Elsevier in Molecular Pharmacology
- Vol. 59 (4) , 806-813
- https://doi.org/10.1124/mol.59.4.806
Abstract
The low oral bioavailability of the HIV protease inhibitor (HPI) saquinavir is dramatically increased by coadministration of the HPI ritonavir. Because saquinavir and ritonavir are substrates and inhibitors of both the drug transporter P-glycoprotein (P-gp) and of the metabolizing enzyme CYP3A4, we wanted to sort out whether the ritonavir effect is primarily mediated by inhibition of CYP3A4 or P-gp or both. P-gp is known to limit the bioavailability, brain, testis, and fetal penetration of its substrates, so effective inhibition of P-gp by ritonavir in vivo might open up pharmacological sanctuary sites for saquinavir, with the potential of beneficial effects on therapy, but also of increased toxicity. In vitro, P-gp-mediated transport of saquinavir and ritonavir was only moderately inhibited by both HPIs compared with the potent P-gp inhibitor PSC833. When [14C]saquinavir was orally coadministered with a maximum tolerated dose of ritonavir to wild-type and P-gp-deficient mice, saquinavir bioavailability was dramatically increased in both strains, but P-gp still limited the oral bioavailability of saquinavir, and its penetration into brain and fetus. These data indicate that in vivo, ritonavir is a relatively poor P-gp inhibitor. The highly increased bioavailability of saquinavir because of ritonavir coadministration most likely results from reduced saquinavir metabolism. Importantly, our data indicate that it is unlikely that ritonavir coadministration will substantially affect the contribution of P-gp to pharmacological sanctuary sites such as brain, testis, and fetus. Thus, if one wanted to effectively open these sites for therapeutic purposes, more efficient P-gp inhibitors should be applied.Keywords
This publication has 31 references indexed in Scilit:
- Re-emergence of HIV after stopping therapyNature, 1999
- Interactions of HIV Protease Inhibitors with ATP-Dependent Drug Export ProteinsMolecular Pharmacology, 1999
- Ritonavir and saquinavir combination therapy for the treatment of HIV infectionAIDS, 1999
- Placental transfer of ritonavir with zidovudine in the ex vivo placental perfusion modelAmerican Journal of Obstetrics and Gynecology, 1998
- Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers.Pharmaceutical Research, 1998
- Identification of a Reservoir for HIV-1 in Patients on Highly Active Antiretroviral TherapyScience, 1997
- Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavirBritish Journal of Clinical Pharmacology, 1997
- BIOCHEMISTRY OF MULTIDRUG RESISTANCE MEDIATED BY THE MULTIDRUG TRANSPORTERAnnual Review of Biochemistry, 1993
- ABC Transporters: From Mircoorganisms to ManAnnual Review of Cell and Developmental Biology, 1992
- The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues.Molecular and Cellular Biology, 1989