Block of LTP in rat hippocampus in vivo by β-amyloid precursor protein fragments

Abstract
THE effects of β-amyloid precursor protein (β-APP) fragments on plasticity of glutamtatergic synaptic transmission were examined in the hippocampus of urethane anaesthetized rats. I.c.v. injection of β-amyloid (Aβ) 1–40 and 1–42 and the C-terminal fragment CT105 greatly shortened the duration of high frequency stimulation-induced long-term potentiation (LTP) of field excitatory postsynaptic potentials in the CA1 area. Whereas in vehicle injected animals LTP was stable over a 5 h recording period, doses of these peptides (Aβ1–40, 0.4 and 3.5 nmol; Aβ1–42, 0.01 nmol; CT105, 0.05 nmol) which did not affect baseline synaptic transmission abolished LTP within 3–5 h. The reduced duration of this form of synaptic plasticity may contribute to the cognitive deficits in Alzheimer's disease.