Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers
- 15 December 1990
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 272 (3) , 713-719
- https://doi.org/10.1042/bj2720713
Abstract
The synthetic 25-residue signal peptide of cytochrome c oxidase subunit IV was labelled with the fluorophor 7-nitrobenz-2-oxa-1,3-diazole (NBD) at its single cysteine residue. Addition of small unilamellar vesicles of 1-palmitoyl 2-oleoyl phosphatidylcholine (POPC) to the labelled peptide resulted in a shift of the NBD excitation and emission spectra to shorter wavelengths. Binding of the peptide to the vesicles was measured by the increase in the fluorescence emission yield. A surface partition constant of (3.9 +/- 0.5) x 10(3) M-1 was derived from these titrations. When the membrane contained, in addition to POPC, negatively charged 1-palmitoyl 2-oleoyl phosphatidylglycerol (POPG), the NBD fluorescence spectra were further shifted to shorter wavelengths and exhibited increased quantum yields. The apparent partition constants were increased to 10(4)-10(5) M-1 for vesicles with 20 or 100 mol% POPG. Lateral diffusion of the peptide was measured by fluorescence recovery after photobleaching in multibilayers of POPC, POPG, POPC/POPG (4:1) and 1,2-dimyristoyl phosphatidylcholine. The lateral diffusion coefficients of the peptide in bilayers of POPC (8 x 10(-8) cm2/s at 21 degrees C) were 1.5-1.6-fold greater than those of NBD-labelled phospholipids (5 x 10(-8) cm2/s at 21 degrees C), but 1.5-1.8-fold smaller (3 x 10(-8) cm2/s in 20% POPG and at 21 degrees C) than the lipid diffusion coefficients in the negatively charged bilayers. It is concluded that the signal peptide associates with phospholipid bilayers in two different forms, which depend on the lipid charge. The experiments with POPC bilayers are well explained by a model in which the peptide partitions into the region of the phospholipid head-groups and diffuses along the membrane/water interface. If POPG is present in the membrane, electrostatic attractions between the basic residues of the peptide and the acidic lipid head-groups result in a deeper penetration of the bilayer. For this case, two models that are both consistent with the experimental data are discussed, in which the peptide either forms an oligomer of three to six partially helical membrane-spanning monomers, or inserts into the bilayer with its amphiphilic helical segment aligned parallel to the plane of the membrane and located near the head-group and outer hydrocarbon region of the bilayer.Keywords
This publication has 28 references indexed in Scilit:
- A 42K outer-membrane protein is a component of the yeast mitochondrial protein import siteNature, 1989
- GTP and methionine bristlesNature, 1989
- Conformations and orientations of a signal peptide interacting with phospholipid monolayersBiochemistry, 1989
- Binding of a neuropeptide, substance P, to neutral and negatively charged lipidsBiochemistry, 1989
- Mitochondrial protein importBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1989
- Import pathways of precursor proteins into mitochondria: multiple receptor sites are followed by a common membrane insertion site.The Journal of cell biology, 1988
- Transcending the impenetrable: How proteins come to terms with membranesBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1988
- A signal sequence receptor in the endoplasmic reticulum membraneNature, 1987
- Incorporation of a synthetic mitochondrial signal peptide into charged and uncharged phospholipid monolayersBiochemistry, 1986
- Lipids of mitochondriaBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1985