Site-directed mutagenesis of Pro327 in the lac permease of Escherichia coli

Abstract
By use of oligonucleotide-directed, site-specific mutagenesis, Pro 327 in the lac permease of Escherichia coli has been replaced with Ala, Gly, or Leu. Permease with Ala at position 327 catalyzes lactose/H+ symport in a manner indistinguishable from wild-type permease. Permease with Gly at position 327, on the other hand, exhibits about one-tenth the activity of wild-type permease but catalyzes lactose accumulation to essentially the same steady-state level as wild-type permease. Finally, permease with Leu at position 327 is completely inactive. The results demonstrate that there is no relationship between permease activity and the helix-breaking (Pro and Gly) or helix-making (Ala and Leu) properties of the residue at position 327. It is suggested that it is primarily a chemical property of the side chain at position 327 (i.e., bulk, hydropathy, and/or ability to hydrogen bond) that is critical for activity and that neither cis/trans isomerization of Pro 327 nor the presence of a kink at this position is important.