Uncoupling Protein-2 Overexpression Inhibits Mitochondrial Death Pathway in Cardiomyocytes
- 8 August 2003
- journal article
- Published by Wolters Kluwer Health in Circulation Research
- Vol. 93 (3) , 192-200
- https://doi.org/10.1161/01.res.0000085581.60197.4d
Abstract
Uncoupling proteins (UCPs) are located in the mitochondrial inner membrane and partially dissipate the transmembrane proton electrochemical gradient. UCP2 is expressed in various human and rodent tissues, including the heart, where its functional role is unknown. In the present study, we tested the hypothesis that UCP2 overexpression could protect cardiomyocytes from oxidative stress-induced cell death by reducing reactive oxygen species (ROS) production in mitochondria. Using an adenoviral vector containing human UCP2, we investigated the effects of UCP2 overexpression on the mitochondrial death pathway induced by oxidative stress (100 micromol/L H2O2) in cultured neonatal cardiomyocytes. UCP2 overexpression significantly suppressed markers of cell death, including TUNEL positivity, phosphatidylserine exposure, propidium iodide uptake, and caspase-3 cleavage. Furthermore, UCP2 remarkably prevented the catastrophic loss of mitochondrial inner membrane potential induced by H2O2, which is a critical early event in cell death. Ca2+ overload and the production of ROS in mitochondria, both of which contribute to mitochondrial inner membrane potential loss, were dramatically attenuated by UCP2 overexpression. Thus, overexpression of UCP2 attenuates ROS generation and prevents mitochondrial Ca2+ overload, revealing a novel mechanism of cardioprotection.Keywords
This publication has 36 references indexed in Scilit:
- Differential Actions of Cardioprotective Agents on the Mitochondrial Death PathwayCirculation Research, 2003
- Mechanistically Distinct Steps in the Mitochondrial Death Pathway Triggered by Oxidative Stress in Cardiac MyocytesCirculation Research, 2003
- Membrane Depolarization of Isolated Rat Liver Mitochondria Attenuates Permeability Transition Pore Opening and Oxidant ProductionAntioxidants and Redox Signaling, 2002
- Regulation of Cellular Oncosis by Uncoupling Protein 2Journal of Biological Chemistry, 2002
- Superoxide activates mitochondrial uncoupling proteinsNature, 2002
- Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, β Cell Dysfunction, and Type 2 DiabetesCell, 2001
- Effect of Calcium on Reactive Oxygen Species in Isolated Rat Cardiomyocytes During Hypoxia and ReoxygenationJournal of Molecular and Cellular Cardiology, 2000
- ATP‐sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondriaThe Journal of Physiology, 1999
- Caspases: Enemies WithinScience, 1998
- Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemiaNature Genetics, 1997