Quantum Information Processing with Semiconductor Macroatoms

Abstract
An all optical implementation of quantum information processing with semiconductor macroatoms is proposed. Our quantum hardware consists of an array of quantum dots and the computational degrees of freedom are energy-selected interband optical transitions. The quantum-computing strategy exploits exciton-exciton interactions driven by ultrafast multicolor laser pulses. Contrary to existing proposals based on charge excitations, our approach does not require time-dependent electric fields, thus allowing for a subpicosecond, decoherence-free, operation time scale in realistic semiconductor nanostructures.

This publication has 22 references indexed in Scilit: