Antigen-specific suppression in genetic responder mice to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). Characterization of conventional and hybridoma-derived factors produced by suppressor T cells from mice injected as neonates with syngeneic GAT macrophages.
Open Access
- 1 December 1982
- journal article
- research article
- Published by Rockefeller University Press in The Journal of Experimental Medicine
- Vol. 156 (6) , 1691-1710
- https://doi.org/10.1084/jem.156.6.1691
Abstract
Spleen cells from C57BL/10 mice injected with syngeneic B10 L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT)-pulsed macrophages (GAT-M phi) within 18 h of birth were unable to respond to soluble GAT, GAT-methylated bovine serum albumin, or B10 GAT-M phi as adults. Spleen cells from these neonatally treated mice responded at control levels to GAT presented in allogeneic M phi and to sheep erythrocytes. Partially purified T cells from these neonatally treated mice suppressed responses by syngeneic virgin, but not primed, spleen cells in an antigen-specific manner and acted during the early phases of the response. These responder GAT-specific suppressor T cells (GAT-TSR) were sensitive to anti-Thy-1 + C and 500-rad irradiation and have the phenotype Ly-1-2+, I-J+; GAT-TSR cells can only suppress responses by spleen cells syngeneic with the GAT-TSR cells at the I-J subregion of H-2. Restimulation of these Ts cells with syngeneic GAT-M phi induces an antigen-specific suppressor factor within the supernatant fluid. The factor, GAT-TsFR, is a glycoprotein with a molecular weight between 48,000 and 63,000, as determined by gel filtration chromatography using isotonic buffers; it bears serologically detectable determinants encoded by the I-J subregion of the H-2 complex, has an antigen-binding site for GAT and L-glutamic acid50-L-tyrosine50, and shares idiotypic determinants with anti-GAT antibodies. The presence of GAT-TsFR in the first 36 h of in vitro culture is required for significant suppression. Furthermore, only responses by spleen cell syngeneic with the cells producing GAT-TsFR at the I-J subregion are suppressed. The fusion of GAT-TsFR-producing cells with BW5147 resulted in generation of two hybridomas with properties and characteristics identical to those of the conventional GAT-TsFR with one exception: conventional and hybridoma 372.D6.5 GAT-TsFR only suppress responses by spleen cells of the I-Jb haplotype, whereas suppression mediated by the second hybridoma GAT-TsFR (372.B3.5) is genetically unrestricted. These hybridoma GAT-TsFR are compared with nonresponder GAT-Ts factor (GAT-TsF) and these responder and nonresponder GAT-TsF are considered in the context of suppressor pathways.This publication has 30 references indexed in Scilit:
- Immunosuppressive factors from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10. IV. Lack of strain restrictions among allogeneic, nonresponder donors and recipients.The Journal of Experimental Medicine, 1978
- Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) III. Immunochemical properties of the GAT-specific suppressive factor.The Journal of Experimental Medicine, 1977
- Immunosuppressive factor(s) extracted from lymphoid cells of nonresponder mice primed with L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) II. Cellular source and effect on responder and nonresponder mice.The Journal of Experimental Medicine, 1977
- Antibodies to major histocompatibility antigens produced by hybrid cell linesNature, 1977
- Regulation by the H-2 gene complex of macrophage-lymphoid cell interactions in secondary antibody responses in vitro.The Journal of Experimental Medicine, 1976
- Regulation of immune responses by suppressor T cells.1976
- GENETIC CONTROL OF IMMUNE RESPONSES IN VITROThe Journal of Experimental Medicine, 1974
- GENETIC CONTROL OF IMMUNE RESPONSES IN VITROThe Journal of Experimental Medicine, 1973
- A rapid method for the isolation of functional thymus‐derived murine lymphocytesEuropean Journal of Immunology, 1973
- IMMUNE RESPONSES IN VITROThe Journal of Experimental Medicine, 1971