Abstract
This paper presents a phasic excitation-activation (PEXA) model of the process of motoneuron excitation and the resultant activation and force development of a motor unit. The model input is an amount of depolarizing current (as when injected with an intracellular electrode) and the model output is muscle force. The model includes dynamics and nonlinearities similar to phenomena discovered experimentally by others: the firing rate response of motoneurons to steps of depolarizing current and the "catch-like enhancement" of force produced by overlapping motor neuron action potentials. The parameter values used in this model are derived from experimentally measured data and expressed in physical units, and model predictions extend to published data beyond those used in generating the model parameter values.