Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection

Abstract
Modulation of mitochondrial respiratory chain, dehydrogenase, and nucleotide-metabolizing enzyme activities is fundamental to cellular protection. Here, we demonstrate that the potassium channel opener diazoxide, within its cardioprotective concentration range, modulated the activity of flavin adenine dinucleotide-dependent succinate dehydrogenase with an IC50of 32 μM and reduced the rate of succinate-supported generation of reactive oxygen species (ROS) in heart mitochondria. 5-Hydroxydecanoic fatty acid circumvented diazoxide-inhibited succinate dehydrogenase-driven electron flow, indicating a metabolism-dependent supply of redox equivalents to the respiratory chain. In perfused rat hearts, diazoxide diminished the generation of malondialdehyde, a marker of oxidative stress, which, however, increased on diazoxide washout. This effect of diazoxide mimicked ischemic preconditioning and was associated with reduced oxidative damage on ischemia-reperfusion. Diazoxide reduced cellular and mitochondrial ATPase activities, along with nucleotide degradation, contributing to preservation of myocardial ATP levels during ischemia. Thus, by targeting nucleotide-requiring enzymes, particularly mitochondrial succinate dehydrogenase and cellular ATPases, diazoxide reduces ROS generation and nucleotide degradation, resulting in preservation of myocardial energetics under stress.

This publication has 67 references indexed in Scilit: