Enzymatic Flow-Injection Analysis of Metabolites Using New Type of Oxygen Sensor Membranes and Phosphorescence Phase Measurements

Abstract
A simple system for enzymatic flow-injection analysis of metabolites is described, which is based on the phosphorescence lifetime based detection of molecular oxygen using phase-modulation techniques and a simple instrument - phosphorescence phase detector equipped with a fibre-optic probe. The phase detector is connected to the oxygen sensor membrane and allows real-time continuous monitoring of the phosphorescence phase shift. This parameter is related to the phosphorescence lifetime of the oxygen probe, therefore giving a measure of the dissolved oxygen concentration, and its changes as a result of the enzymatic oxidative reaction with the substrate. The sensor membrane is positioned in a compact integrated flow-through cell and exposed to the flow stream. Using glucose as a test analyte and glucose oxidase enzyme, two different sensor setups were tested: 1) the membrane type biosensor in which the enzyme is immobilized directly on the oxygen sensor membrane; 2) the microcolumn type biosensor in which the enzyme is immobilized separately, on a microparticle sorbent (controlled pore glass) and put into a microcolumn with the oxygen sensor membrane placed at the column outlet. In either case a new type of oxygen sensitive material was used, which provides a number of advantages over the existing materials. In this material the oxygen-sensitive coating was applied on a microporous scattering support, the latter comprised of a layer of cellulose particles on polyester support. Performance and main working characteristics for the two setups and the new oxygen sensor membranes were investigated and compared.