Bone remodeling during the development of osteoporosis in paraplegia

Abstract
Osteoporosis developing during the first weeks after the onset of traumatic paraplegia was studied with cortical and cancellous samples of iliac crest and tibia of 14 patients, and compared to normals. We used a procedure of bone particle fractionation (according to degree of mineralization) that allowed us to establish a profile reflecting the metabolic remodeling of bone and to analyze the organic matrix of the newly synthesized tissue. In paraplegics, we observed a large increase in the proportion of little calcified bone in the cortical as well as in the cancellous bone. Based on amino acid analyses, we found a decreased number of hydroxyproline residues in the newly synthesized organic matrix from paraplegia bone resulting either from an alteration of the prolyl hydroxylation or from the presence of an excess of noncollagen polypeptides. These results, together with previously published data reporting increased urinary hydroxylproline and calcium kinetic parameters, suggest an enhanced rate of skeletal remodeling in acute paraplegia. When investigated 2 years after injury, the patterns of distribution approach that of normal subjects.