Photospheric Abundances of the Hot Stars in NGC1399 and Limits on the Fornax Cluster Cooling Flow

  • 11 February 2002
Abstract
We present far-UV spectroscopy of the giant elliptical galaxy NGC 1399, obtained with the Far Ultraviolet Spectroscopic Explorer. Of all quiescent ellipticals, NGC 1399 has the strongest known ``UV upturn'' -- a sharp spectral rise shortward of 2500 A. It is now well-established that this emission comes from hot horizontal branch (HB) stars and their progeny; however, the chemical composition of these stars has been the subject of a long-standing debate. For the first time in observations of any elliptical galaxy, our spectra clearly show photospheric metallic absorption lines within the UV upturn. The abundance of N is at 45% solar, Si is at 13% solar, and C is at 2% solar. Such abundance anomalies are a natural consequence of gravitational diffusion. These photospheric abundances fall in the range observed for subdwarf B stars of the Galactic field. Although NGC1399 is at the center of the Fornax cluster, we find no evidence for O VI cooling flow emission. The upper limit to 1032,1038 emission is 3.9E-15 erg/s/cm2, equivalent to 0.14 M_sun/yr, and less than that predicted by simple cooling flow models of the NGC 1399 X-ray luminosity.

This publication has 0 references indexed in Scilit: