Stereology for anisotropic cells: Application to growth cartilage*

Abstract
A number of either new or recently available stereological methods are described for estimating volume, surface area and number of anisotropic cells. The methods are illustrated with direct reference to the epiphyseal growth plate. Different estimates of a given quantity are obtained by applying alternative methods to the same set of sections, in order to compare the relative merits of the methods. For instance, the surface area of the cells is estimated via the Dimroth–Watson model (which gives a measure of the degree of anisotropy in addition to the surface area estimate) and from vertical sections using cycloid test systems. Cell number is estimated by traditional unfolding methods and by the new disector method. Also, volume-weighted mean cell volume is estimated from vertical sections via point-sampled intercepts using two different kinds of rulers to classify intercept lengths. Finally, nested design statistics is applied to a set of data from twelve animals in order to compare the relative impacts of biological and stereological (sampling) variations on the observed coefficient of error of a group mean estimate. The preferred methods are listed in the final section.