Heteromultimeric Delayed-Rectifier K+Channels in Schwann Cells: Developmental Expression and Role in Cell Proliferation
Open Access
- 15 December 1998
- journal article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 18 (24) , 10398-10408
- https://doi.org/10.1523/jneurosci.18-24-10398.1998
Abstract
Schwann cells (SCs) are responsible for myelination of nerve fibers in the peripheral nervous system. Voltage-dependent K+ currents, including inactivating A-type (KA), delayed-rectifier (KD), and inward-rectifier (KIR) K+ channels, constitute the main conductances found in SCs. Physiological studies have shown that KD channels may play an important role in SC proliferation and that they are downregulated in the soma as proliferation ceases and myelination proceeds. Recent studies have begun to address the molecular identity of K+ channels in SCs. Here, we show that a large repertoire of K+ channel α subunits of theShaker (Kv1.1, Kv1.2, Kv1.4, and Kv1.5),Shab (Kv2.1), and Shaw (Kv3.1b and Kv3.2) families is expressed in mouse SCs and sciatic nerve. We characterized heteromultimeric channel complexes that consist of either Kv1.5 and Kv1.2 or Kv1.5 and Kv1.4. In postnatal day 4 (P4) sciatic nerve, most of the Kv1.2 channel subunits are involved in heteromultimeric association with Kv1.5. Despite the presence of Kv1.1 and Kv1.2 α subunits, the K+ currents were unaffected by dendrotoxin I (DTX), suggesting that DTX-sensitive channel complexes do not account substantially for SC KDcurrents. SC proliferation was found to be potently blocked by quinidine or 4-aminopyridine but not by DTX. Consistent with previous physiological studies, our data show that there is a marked downregulation of all KD channel α subunits from P1–P4 to P40 in the sciatic nerve. Our results suggest that KD currents are accounted for by a complex combinatorial activity of distinct K+channel complexes and confirm that KDchannels are involved in SC proliferation.Keywords
This publication has 43 references indexed in Scilit:
- Axons regulate the expression of shaker‐like potassium channel genes in Schwann cells in peripheral nerveGlia, 1994
- Purification and Characterization of Three Inhibitors of Voltage-Dependent K+ Channels from Leiurus Quinquestriatus var. Hebraeus VenomBiochemistry, 1994
- Voltage‐dependent ion channels in glial cellsGlia, 1994
- Voltage-gated ion channels in schwann cells and gliaTrends in Neurosciences, 1992
- Shaker, Shal, Shab, and Shaw express independent K+ current systemsNeuron, 1991
- Determination of the subunit stoichiometry of a voltage-activated potassium channelNature, 1991
- Single K+ channel properties in cultured mouse Schwann cells: Conductance and kineticsJournal of Neuroscience Research, 1991
- K+ channel properties in cultured mouse Schwann cells: Dependence on extracellular K+Journal of Neuroscience Research, 1991
- Dynamics of aminopyridine block of potassium channels in squid axon membrane.The Journal of general physiology, 1976
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970