Abstract
Single-point rough collisions in multibody systems with perfect constraints, under the assumptions of Coulomb’s friction and infinite tangential stiffness at the collision point, require usually an integration over the normal impulse. The evolution of the sliding velocity, which is needed in the integration, is determined by an autonomous nonlinear flow. The phase-space geometry of this flow depends upon five parameters associated with the system collision configuration and the friction coefficient μ, and gives a global picture of the system behavior in collisions with the configuration considered and arbitrary initial velocities. This geometry is studied using μ, as a control parameter, and a set of threshold values of μ, associated with changes in qualitative behavior are determined.

This publication has 5 references indexed in Scilit: