Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines
- 1 June 2001
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Geoscience and Remote Sensing
- Vol. 39 (6) , 1119-1128
- https://doi.org/10.1109/36.927423
Abstract
Chemical vapors originating from the explosive charge within landmines and unexploded ordnance (UXO) form a chemical "signature" unique to these devices. The fact that canines can detect this signature was a primary motivation for the Defense Advanced Research Projects Agency's (DARPA) Dog's Nose Program. One goal of this program was to develop electronic chemical sensors that mimic the canine's ability to detect landmines. The sensor described here, developed under this program, utilizes novel fluorescent polymers to detect landmine signature vapors in air at ultratrace concentration levels (parts-per-trillion or less). Thin films of the polymers are highly emissive but undergo a dramatic reduction in emission intensity when molecules of target analytes bind to the polymer. Binding of a single explosive molecule can quench the fluorescence from hundreds of polymer repeat units, resulting in an amplification of the quenching response. The polymer structure contains receptor sites designed to interact specifically with nitroaromatic explosives, enhancing the selectivity of the polymers for target analytes. A man-portable sensor prototype, similar in size and configuration to metal detectors currently used for mine detection, has demonstrated performance comparable to that of canines during field tests monitored by DARPA at Fort Leonard Wood, MO.Keywords
This publication has 7 references indexed in Scilit:
- Progress on determining the vapor signature of a buried land minePublished by SPIE-Intl Soc Optical Eng ,2000
- Iptycene-Containing Poly(aryleneethynylene)sMacromolecules, 2000
- Progress on determining the vapor signature of a buried land minePublished by SPIE-Intl Soc Optical Eng ,1999
- Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural EffectsJournal of the American Chemical Society, 1998
- Canine detection odor signatures for mine-related explosivesPublished by SPIE-Intl Soc Optical Eng ,1998
- Porous Shape Persistent Fluorescent Polymer Films: An Approach to TNT Sensory MaterialsJournal of the American Chemical Society, 1998
- Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymersJournal of the American Chemical Society, 1995