Air embolism-induced lung injury in isolated rat lungs

Abstract
Pulmonary air embolism causes physical obstruction of microvasculature and leads to permeability changes, release of mediators, and injury to lung tissue. In this study we employed an isolated perfused rat lung model to investigate the primary and secondary effects produced by infusion of air into the pulmonary artery. Infusion of various doses of air (0.10–0.25 ml) over a 1-min period produced a dose-dependent increase in pulmonary arterial pressure and lung weight gain. In contrast, when a constant air dose was administered over various periods of time (0.25 ml over 0.5–8.0 min), the pulmonary arterial pressure rose to the same extent regardless of the infusion rate, whereas the lung weight gain increased proportionately with the rate of infusion. Total vascular resistance rose from 1.41 +/- 0.04 to 5.04 +/- 0.09 mmHg.ml-1.min in rats given 0.25 ml air over 1 min (n = 14, P less than 0.001), with greater than or equal to 90% of this increase occurring in the arterial segments. Both thromboxane B2 and endothelin concentrations also increased in the perfusate, suggesting their involvement in this increased resistance. Furthermore the pulmonary filtration coefficient increased from 0.21 +/- 0.05 to 1.28 +/- 0.26 g.min-1.cmH2O–1.100 g (n = 8, P less than 0.001), and the protein concentration in lung lavage fluid also rose, indicating lung injury. Leukocyte counts in the perfusate were unaffected by embolization, but chemiluminescent activity was increased, indicating a possible role for activated leukocytes in lung injury induced by air emboli.(ABSTRACT TRUNCATED AT 250 WORDS)

This publication has 0 references indexed in Scilit: