Eine Kennzeichnung Semi-perfekter Moduln

Abstract
Ein projektiver Modul wird (in [1]) semi-perfekt genannt, wenn jedes epimorphe Bild von ihm eine projektive Hülle besitzt. Eine projektive Hülle eines Moduls C ist eine exakte Fole wobei P projektiv ist und der Kern Ke(f) von f Klein (= small = superflous)* in P ist. In [1] wird gezeigt, daB ein projektiver Modul P dann und nur dann semi-perfekt ist, wenn das Radikal Ra(P) von P klein in P ist, P̅ = P/Ra(P) halbeinfach ist und jede direkte Zerlegung von P̅ durch eine direkte Zerlegung von P induziert wird.

This publication has 1 reference indexed in Scilit: