Intermittency and preferential transport of heat in a round jet

Abstract
The temperature and velocity fields in a round heated jet were investigated in detail. Both conventional measurements and conditional measurements (zone averages and point averages) were performed. The probability density functions of the lengths of turbulent and non-turbulent durations were also measured. Filtered correlation measurements show that large-scale turbulent motions were responsible for the bulk of momentum and heat transport, and also that small scales were more efficient in transporting heat than in transporting momentum. In no case was heat transported further or more than momentum, however. These results are discussed in detail, particularly with regard to the entrainment. Conservation equations for turbulent-zone variables and the intermittency factor are derived and a model for some of the resulting higher-order correlations is suggested. An exact equation for the intermittency function is presented.

This publication has 1 reference indexed in Scilit: