Control of mitotic transitions by the anaphase–promoting complex
- 29 September 1999
- journal article
- review article
- Published by The Royal Society in Philosophical Transactions Of The Royal Society B-Biological Sciences
- Vol. 354 (1389) , 1583-1590
- https://doi.org/10.1098/rstb.1999.0502
Abstract
Proteolysis controls key transitions at several points in the cell cycle. In mitosis, the activation of a large ubiquitin–protein ligase, the anaphase–promoting complex (APC), is required for anaphase initiation and for exit from mitosis. We show that APC is under complex control by a network of regulatory factors, CDC20, CDH1 and MAD2. CDC20 and CDH1 are activators of APC; they bind directly to APC and activate its cyclin ubiquitination activity. CDC20 activates APC at the onset of anaphase in a destruction box (DB)–dependent manner, while CDH1 activates APC from late anaphase through G1 with apparently a much relaxed specificity for the DB. Therefore, CDC20 and CDH1 control both the temporal order of activation and the substrate specificity of APC, and hence regulate different events during mitosis and G1. Counteracting the effect of CDC20, the checkpoint protein MAD2 acts as an inhibitor of APC. When the spindle–assembly checkpoint is activated, MAD2 forms a ternary complex with CDC20 and APC to prevent activation of APC, and thereby arrests cells at prometaphase. Thus, a combination of positive and negative regulators establishes a regulatory circuit of APC, ensuring an ordered progression of events through cell division.Keywords
This publication has 61 references indexed in Scilit:
- The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiaeThe EMBO Journal, 1998
- cDNA Cloning, Expression, Subcellular Localization, and Chromosomal Assignment of Mammalian Aurora Homologues, Aurora-Related Kinase (ARK) 1 and 2Biochemical and Biophysical Research Communications, 1998
- APC-Mediated Proteolysis of Ase1 and the Morphogenesis of the Mitotic SpindleScience, 1997
- Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p.Genes & Development, 1996
- Activation of the Budding Yeast Spindle Assembly Checkpoint Without Mitotic Spindle DisruptionScience, 1996
- Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s).The Journal of cell biology, 1996
- Pds1p is required for faithful execution of anaphase in the yeast, Saccharomyces cerevisiaeThe Journal of cell biology, 1996
- Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradationCurrent Biology, 1996
- Feedback control of mitosis in budding yeastCell, 1991
- S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule functionCell, 1991