Abstract
Groundwater bacteria isolated from an oligotrophic-saturated soil showed a mixed strategy of economized metabolism and migration when grown in a continuous-flow column system simulating poor or nutrient-amended growth conditions. The cells were generally μm in diameter in pure groundwater, but doubled in size when the concentration of dissolved organic carbon and phosphate in groundwater was increased 10-fold. The biomass, estimated from analysis of muramic acid (MuAc) in cell wall peptidoglucans, increased at the same time by a factor of 5 when the solid support in the columns was gravel and by a factor of 10 when it was glass beads. Bacteria in pure groundwater stored 10 times more of the energy-rich polysaccharide, poly-β-hydroxybutyric acid (PHB), than bacteria in enriched groundwater, and those cells that were attached to the gravel stored 10 times as much as cells in the interstitial pore water. Once phosphate was added to groundwater, stored PHB was metabolized. The proportion of free-living to attached bacteria was 2 to 10 times higher in enriched compared with pure groundwater indicating a mass transport of cells as the carrying capacity of their habitat rose.