Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable.
Open Access
- 1 September 1988
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 107 (3) , 1025-1035
- https://doi.org/10.1083/jcb.107.3.1025
Abstract
To study the possible mechanism of microtubule turnover in interphase cells, we have used the 266-nm wavelength of a short-pulsed Nd/YAG laser to transect microtubules in situ in PtK2 cells at predefined regions. The regrowth and shrinkage of the transected microtubules have been examined by staining the treated cells with antitubulin mAb at various time points after laser irradiation. The results demonstrate that microtubules grow back into the transected zones individually; neither simultaneous growth nor shrinkage of all microtubules has been observed. The half-time of replacement of laser-dissociated microtubules is observed to be approximately 10 min. On the other hand, exposure of the core of the microtubule, which is expected to consist almost completely of GDP-tubulin, by transecting the internal regions of the microtubule does not render the remaining polymer catastrophically disassembled, and most transected microtubules with free minus ends do not quickly disappear. Taken together, these results suggest that most microtubules in cultured interphase cells exhibit some properties of dynamic instability (individual regrowth or shrinkage); however, other factors in addition to the hydrolysis of GTP-tubulin need to be involved in modulating the dynamics and the stability of these cytoplasmic microtubules.Keywords
This publication has 39 references indexed in Scilit:
- MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties.The Journal of cell biology, 1987
- Microtubule dynamics in vivo: a test of mechanisms of turnover.The Journal of cell biology, 1987
- Dynamic and stable populations of microtubules in cells.The Journal of cell biology, 1987
- Dynamics of microtubule depolymerization in monocytes.The Journal of cell biology, 1986
- Microtubule dynamics in interphase cells.The Journal of cell biology, 1986
- A chicken-yeast chimeric β-tubulin protein is incorporated into mouse microtubules in vivoCell, 1986
- Head-to-tail polymerization of microtubules in vitroJournal of Molecular Biology, 1981
- Structural polarity of kinetochore microtubules in PtK1 cells.The Journal of cell biology, 1981
- Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo.The Journal of cell biology, 1980
- Kinetic analysis of microtubule self-assembly in vitroJournal of Molecular Biology, 1977