Abstract
Various biochemical and physiological processes that undergo maturational changes during human brain development can be now studied in vivo using PET. The distribution of local cerebral glucose utilization shows regional alterations in the first year of life in agreement with behavioral, neurophysiological, and anatomical changes known to occur during development of the infant. Measurement of the absolute rates of glucose utilization with PET reveals that during the major portion of the first decade, the human brain has a higher energy (glucose) demand compared with both the newborn and adult brains. With adolescence, glucose utilization rates decline to reach adult values by age 16-18 years. This nonlinear course of cerebral glucose 'metabolic' maturation is also seen in a number of animal models and coincides with the develop mental course of transient synaptic exuberance associated with enhanced brain plasticity and efficient learn ing. Evidence of brain reorganization detected with PET is discussed in children with unilateral brain injury and early sensory deprivation. NEUROSCIENTIST 5:29-40, 1999