Involvement of Mitogen-Activated Protein Kinase Pathways inStaphylococcus aureusInvasion of Normal Osteoblasts

Abstract
Staphylococcus aureus invades osteoblasts and can persist in the intracellular environment. The present study examined the role of osteoblast mitogen-activated protein kinase (MAPK) pathways in bacterial invasion. S. aureus infection of normal human and mouse osteoblasts resulted in an increase in the phosphorylation of the extracellular signal-regulated protein kinases (ERK 1 and 2). This stimulation of ERK 1 and 2 correlated with the time course of S. aureus invasion, and bacterial adherence induced the MAPK pathway. ERK 1 and 2 phosphorylation was time and dose dependent and required active S. aureus gene expression for maximal induction. The nonpathogenic Staphylococcus carnosus was also able to induce ERK 1 and 2 phosphorylation, albeit at lower levels than S. aureus. Phosphorylation of the stress-activated protein kinases was increased in both infected human and mouse osteoblasts; however, the p38 MAPK pathway was not activated in response to S. aureus. Finally, the transcription factor c-Jun, but not Elk-1 or ATF-2, was phosphorylated in response to S. aureus infection.