On the performance of random‐coefficient pattern‐mixture models for non‐ignorable drop‐out
- 23 July 2003
- journal article
- research article
- Published by Wiley in Statistics in Medicine
- Vol. 22 (16) , 2553-2575
- https://doi.org/10.1002/sim.1475
Abstract
Random‐coefficient pattern‐mixture models (RCPMMs) have been proposed for longitudinal data when drop‐out is thought to be non‐ignorable. An RCPMM is a random‐effects model with summaries of drop‐out time included among the regressors. The basis of every RCPMM is extrapolation. We review RCPMMs, describe various extrapolation strategies, and show how analyses may be simplified through multiple imputation. Using simulated and real data, we show that alternative RCPMMs that fit equally well may lead to very different estimates for parameters of interest. We also show that minor model misspecification can introduce biases that are quite large relative to standard errors, even in fairly small samples. For many scientific applications, where the form of the population model and nature of the drop‐out are unknown, interval estimates from any single RCPMM may suffer from undercoverage because uncertainty about model specification is not taken into account. Copyright © 2003 John Wiley & Sons, Ltd.Keywords
This publication has 32 references indexed in Scilit:
- Strategies to fit pattern-mixture modelsBiostatistics, 2002
- Monotone missing data and pattern‐mixture modelsStatistica Neerlandica, 1998
- Application of random-effects pattern-mixture models for missing data in longitudinal studies.Psychological Methods, 1997
- Multiple Imputation after 18+ YearsJournal of the American Statistical Association, 1996
- Modeling the Drop-Out Mechanism in Repeated-Measures StudiesJournal of the American Statistical Association, 1995
- Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric ModellingJournal of the Royal Statistical Society Series C: Applied Statistics, 1994
- Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures DataJournal of the American Statistical Association, 1988
- Inference and missing dataBiometrika, 1976