Unilateral Cortical Contusion Injury in the Rat: Vascular Disruption and Temporal Development of Cortical Necrosis

Abstract
Cerebrovascular disruption and cortical pathology resulting from either moderate (M-TBI) or severe (S-TBI) traumatic brain injury produced by a pneumatically-driven cortical contusion device were assessed in adult male rats sacrificed at 6 and 24 h or 8 and 30 days after injury to the right sensorimotor cortex. Epidural, subdural, subarachnoid, petechial (cortex and corpus callosum), and/or intraventricular hemorrhage was present in all animals, more extensively and severely following S-TBI. At 6 or 24 h after TBI, acidophilic (acid fuchsinpositive) neurons were numerous and widespread (S-TBI > M-TBI) in the ipsilateral contused cortex. By 8 days few acidophilic neurons were present in peri-impact regions of the ipsilateral neocortex, and none were detected in cortex 30 days postinjury. Both M-TBI and S-TBI groups had enlarged ipsilateral cortical volumes (edema) at 6 and 24 h postcontusion. Eight and 30 days after injury the mean volume of cortical necrosis was significantly larger in S-TBI than in M-TBI rats, and cortical necrosis in both TBI conditions increased between 8 to 30 days postinjury. These results indicate that this pneumatically-driven contusion device produces reliable and consistent primary and secondary cortical histopathology, the extent of which is related to the severity of initial injury.