Strain-induced submicrocrystalline grains developed in austenitic stainless steel under severe warm deformation

Abstract
Strain-induced grain evolution in a 304 type austenitic stainless steel has been studied in multiple compression with the loading direction being changed in each pass. The tests were carried out to total strains above 6 at 873 K (0.5 T m) at a strain rate of about 10-3 s-1. Multiple deformation promotes the rapid formation of many mutually crossing subboundaries because various slip systems operate from pass to pass. The gradual rise in misorientations across dislocation subboundaries with increasing strain finally leads to the evolution of very fine grains with large-angle boundaries. It is concluded that a new grained structure can result from a kind of continuous reaction during deformation, namely continuous dynamic recrystallization. Such deformation-induced grains are characterized by relatively low densities of dislocations, and considerable lattice curvatures developed in their interiors. The latter observations suggest that high elastic distortions are developed in the grain interiors and so such strain-induced grain structures are in a non-equilibrium state.

This publication has 0 references indexed in Scilit: