Simultaneous operation of the Sea Beam multibeam echo-sounder and the SeaMARC II bathymetric sidescan sonar system

Abstract
An experiment aboard the Scripps Institution of Oceanography\u27s RV Thomas Washington has demonstrated the seafloor mapping advantages to be derived from combining the high-resolution bathymetry of a multibeam echo-sounder with the sidescan acoustic imaging plus wide-swath bathymetry of a shallow-towed bathymetric sidescan sonar. To a void acoustic interference between the ship\u27s 12-kHz Sea Beam multibeam echo-sounder and the 11-12-kHz SeaMARC II bathymetric sidescan sonar system during simultaneous operations, Sea Beam transmit cycles were scheduled around SeaMARC II timing events with a sound source synchronization unit originally developed for concurrent single-channel seismic, Sea Beam, and 3.5-kHz profile operations. The scheduling algorithm implemented for Sea Beam plus SeaMARC II operations is discussed, and the initial results showing their combined seafloor mapping capabilities are presented

This publication has 7 references indexed in Scilit: