Anomalous Doppler-Effect and Polariton-Mediated Cooling of Two-Level Atoms

Abstract
We consider an atom moving in a near resonant laser field with its dipole strongly coupled to a resonator field mode. As compared to the standard Doppler shift, we find a substantially different and counterintuitive linear velocity dependence of the light scattering properties. The mechanical force of the laser field exhibits strong velocity selectivity at a polariton resonance, which gives rise to an enhanced friction force and Doppler cooling even in the directions perpendicular to the resonator axis. This effect allows for sub-Doppler cooling of atoms even with a nondegenerate ground state.