Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro.
Open Access
- 1 June 1996
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 97 (11) , 2534-2540
- https://doi.org/10.1172/jci118701
Abstract
Dietary phosphorus (P) restriction is known to ameliorate secondary hyperparathyroidism in renal failure patients. In early renal failure, this effect may be mediated by an increase in 1,25-(OH)2D3, whereas in advanced renal failure, P restriction can act independent of changes in 1,25-(OH)2D3 and serum ionized calcium (ICa). In this study, we examined the effects of dietary P on serum PTH, PTH mRNA, and parathyroid gland (PTG) hyperplasia in uremic rats. Normal and uremic rats were maintained on a low (0.2%) or high (0.8%) P diet for 2 mo. PTG weight and serum PTH were similar in both groups of normal rats and in uremic rats fed the 0.2% P diet. In contrast, there were significant increases in serum PTH (130 +/- 25 vs. 35 +/- 3.5 pg/ml, P < 0.01), PTG weight (1.80 +/- 0.13 vs. 0.88 +/- 0.06 microg/gram of body weight, P < 0.01), and PTG DNA (1.63 +/- 0.24 vs. 0.94 +/- 0.07 microg DNA/gland, P < 0.01) in the uremic rats fed the 0.8% P diet as compared with uremic rats fed the 0.2% P diet. Serum ICa and 1,25-(OH)2D3 were not altered over this range of dietary P, suggesting a direct effect of P on PTG function. We tested this possibility in organ cultures of rat PTGs. While PTH secretion was acutely (30 min) regulated by medium calcium, the effects of medium P were not evident until 3 h. During a 6-h incubation, PTH accumulation was significantly greater in the 2.8 mM P medium than in the 0.2 mM P medium (1,706 +/- 215 vs. 1,033 +/- 209 pg/microg DNA, P < 0.02); the medium ICa was 1.25 mM in both conditions. Medium P did not alter PTH mRNA in this system, but cycloheximide (10 microg/ml) abolished the effect of P on PTH secretion. Thus, the effect of P is posttranscriptional, affecting PTH at a translational or posttranslational step. Collectively, these in vivo and in vitro results demonstrate a direct action of P on PTG function that is independent of ICa and 1,25-(OH)2D3.Keywords
This publication has 26 references indexed in Scilit:
- Prevention of Enhanced Parathyroid Hormone Secretion, Synthesis and Hyperplasia by Mild Dietary Phosphorus Restriction in Early Chronic Renal Failure in Rats: Possible Direct Role of PhosphorusNephron, 1995
- Prospective trial of pulse oral versus intravenous calcitriol treatment of hyperparathyroidism in ESRDKidney International, 1994
- Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients.Journal of Clinical Investigation, 1993
- In Advanced Renal Failure, Dietary Phosphorus Restriction Reverses Hyperparathyroidism Independent of Changes in the Levels of CalcitriolNephron, 1993
- Rearrangement and overexpression of D11S287E, a candidate oncogene on chromosome 11q13 in benign parathyroid tumors.1991
- Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men.Journal of Clinical Investigation, 1989
- 1,25-DIHYDROXYCHOLECALCIFEROL AND PARATHYROID-HORMONE IN ADVANCED CHRONIC-RENAL-FAILURE - EFFECTS OF SIMULTANEOUS PROTEIN AND PHOSPHORUS RESTRICTION1986
- Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency.Journal of Clinical Investigation, 1984
- Primary monolayer cell culture of bovine parathyroids: Effects of calcium, isoproterenol and growth factorsMolecular and Cellular Endocrinology, 1983
- On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dogJournal of Clinical Investigation, 1971