Role of thermal boundary resistance on the heat flow in carbon-nanotube composites

Abstract
We use classical molecular dynamics simulations to study the interfacial resistance for heat flow between a carbon nanotube and octane liquid. We find a large value of the interfacial resistance associated with weak coupling between the rigid tube structure and the soft organic liquid. Our simulation demonstrates the key role played by the soft vibration modes in the mechanism of the heat flow. These results imply that the thermal conductivity of carbon-nanotube polymer composites and organic suspensions will be limited by the interface thermal resistance and are consistent with recent experiments.

This publication has 31 references indexed in Scilit: