Abstract
Biological sensory-motor systems have an extraordinary facility for adaptation. The accurate behavior demonstrated by such systems even under severe informational discrepancy has generated theories proposing altered internal models as the basis for such adaptation. Here we propose a similar perturbed parameter scheme for the low-level control of robotic manipulators. Thus, the dynamic and kinematic parameters in any suitable theoretical model can be perturbed from their true values in order to achieve enhanced performance in the vicinity of a given trajectory. Critical issues in this approach involve selection of parameters for identification and the estimation technique itself. A new approach is also highlighted which permits the self-calibration of the link inertias while executing any desired trajectory.© (1985) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.
Keywords