Mammary Tumor Induction in Transgenic Mice Expressing an RNA-Binding Protein

Abstract
We have analyzed mammary tumors arising in transgenic mice expressing a novel, multifunctional RNA-binding protein. The protein, which we call the c-myc mRNA coding region instability determinant binding protein (CRD-BP), binds to c-myc, insulin-like growth factor II, and β-actin mRNAs, and to H19 RNA. Depending on the RNA substrate, the CRD-BP affects RNA localization, translation, or stability. CRD-BP levels are high during fetal development but low or undetectable in normal adult tissues. The CRD-BP is linked to tumorigenesis, because its expression is reactivated in some adult human breast, colon, and lung tumors. These data suggest the CRD-BP is a proto-oncogene. To test this idea, the CRD-BP was expressed from the whey acidic protein (WAP) promoter in mammary epithelial cells of adult transgenic mice. The incidence of mammary tumors was 95% and 60% in two lines of WAP-CRD-BP mice with high and low relative CRD-BP expression, respectively. Some of the tumors metastasized. Nontransgenic mice did not develop mammary tumors. H19 RNA and insulin-like growth factor II mRNA were up-regulated significantly in non-neoplastic WAP-CRD-BP mammary tissue. WAP-CRD-BP mice are a novel model for mammary neoplasia and might provide insights into human breast cancer biology.