Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone inWangiella dermatitidis

Abstract
Melanin biosynthesis in the human pathogenWangiella dermatitidis was inhibited by tricyclazole, causing pentaketide melanin metabolites to accumulate in the cultures. One of these metabolites, scytalone, was racemic and thus different than the (+)-enantiomer fromVerticillium dahliae. An albino mutant ofW. dermatitidis metabolized scytalone to a pigment ultrastructurally identical to wild-type melanin. Cell-free homogenates of the wild type carried out typical reductive and dehydrative reactions with known melanin intermediates and the reductive reactions were inhibited by tricyclazole. Other reductive and dehydrative reactions that utilize flaviolin and 2-hydroxyjuglone were studied anaerobically with homogenates from both the wild type and the albino mutant. The homogenates converted flaviolin to 5-hydroxyscytalone and products identical to those obtained from 2-hydroxyjuglone. The albino, in culture, carried out the same reactions with 2-hydroxyjuglone but metabolized flaviolin to a number of unknown colored products apparently through oxidative reactions. Similarities between the melanin pathway and the flaviolin and 2-hydroxyjuglone branch pathways are discussed and tricyclazole is shown to inhibit reductive reactions with naphthols in the three pathways.