Abstract
A technique is described which allows the removal of seeing distortions from a single frame of speckle-type imagery, provided that this frame is obtained using an aperture consisting of a nonredundant array of subapertures, each smaller than the seeing correlation length. Although performed a posteriori, the method is related to those already proposed for use with active optical systems. Computer simulations are decribed which verify the basic features of this technique. The simulations indicate that reconstructed images of diffraction-limited quality should be obtainable for starlike objects as dim as eighth magnitude. For more extended objects, the limiting magnitude depends somewhat on the object structure. The technique described is immediately applicable to any large telescope, and because the processing is done after the fact, a frame containing many isoplanatic patches may be processed piecewise, allowing the reconstruction of large areas.