Affine bundles and integrable almost tangent structures
- 1 July 1985
- journal article
- Published by Cambridge University Press (CUP) in Mathematical Proceedings of the Cambridge Philosophical Society
- Vol. 98 (01) , 61-71
- https://doi.org/10.1017/s0305004100063246
Abstract
An almost tangent structure on a manifold N is a type (1,1) tensor field S onN with the property that at each point y ∊N the kernel of Sy (regarded as a linear endo-morphism of TyN) coincides with its image. An almost tangent structure is said to be integrable if its Nijenhuis tensor vanishes.Keywords
This publication has 8 references indexed in Scilit:
- Defining Euler-Lagrange fields in terms of almost tangent structuresPhysics Letters A, 1983
- Differential geometry on almost tangent manifoldsAnnali di Matematica Pura ed Applicata (1923 -), 1975
- Integrable almost tangent structuresJournal of Differential Geometry, 1974
- Structure presque tangente et connexions IIAnnales de l'institut Fourier, 1972
- Structure presque tangente et connexions IAnnales de l'institut Fourier, 1972
- Integrability criteria for systems of nonlinear partial differential equationsJournal of Differential Geometry, 1967
- On the General Theory of Differentiable Manifolds with Almost Tangent StructureCanadian Mathematical Bulletin, 1965
- Espaces variationnels et mécaniqueAnnales de l'institut Fourier, 1962