Adenovirus-mediated transfer of heme oxygenase-1 cDNA attenuates severe lung injury induced by the influenza virus in mice

Abstract
Heme oxygenase-1 (HO-1) is an inducible heat shock protein that regulates heme metabolism to form bilirubin, ferritin and carbon monoxide. Based on recent evidence that HO-1 is involved in the resolution of inflammation by modulating apoptotic cell death or cytokine expression, the present study examined whether overexpression of exogenous HO-1 gene transfer provides a therapeutic effect on a murine model of acute lung injury caused by the type A influenza virus. We demonstrate herein that the transfer of HO-1 cDNA resulted in (1) suppression of both pathological changes and intrapulmonary hemorrhage; (2) enhanced survival of animals; and (3) a decrease of inflammatory cells in the lung. TUNEL analysis revealed that HO-1 gene transfer reduced the number of respiratory epithelial cells with DNA damage, and caspase assay suggested that HO-1 suppressed lung injury via a caspase-8-mediated pathway. These findings suggest the feasibility of HO-1 gene transfer to treat lung injury induced by a pathogen commonly seen in the clinical setting. Since oxidative stress and lung injury are involved in many lung disorders, such as pneumonia induced by a variety of microorganisms and pulmonary fibrosis, HO-1 may be useful for wider clinical applications in gene therapy targeting lung disorders including acute pneumonia and pulmonary fibrosis. Gene Therapy (2001) 8, 1499–1507.

This publication has 57 references indexed in Scilit: