δ-Aminolevulinate Dehydratase Inhibition by 2, 3-Dimercaptopropanol is Mediated by Chelation of Zinc from a Site Involved in Maintaining Cysteinyl Residues in a Reduced State

Abstract
The mechanisms underlying mouse delta-aminolevulinate dehydratase (ALA-D) inhibition by a chelating agent used in the treatment of heavy metal poisoning, 2,3-dimercaptopropanol (British Anti-Lewisite), were investigated. ALA-D inhibition by 2,3-dimercaptopropanol was totally reversed by 25-100 microM Zn2+, indicating that inhibition was due to chelation of zinc by 2,3-dimercaptopropanol. Our data suggested that zinc bound to a labile site (displaced by 25-40 microM EDTA or 500 microM 2,3-dimercaptopropanol) is involved in maintaining the sulfhydryl groups of ALA-D in a reduced state (essential for enzyme activity), since inhibition by these compounds was reversed by 10 mM dithiotreitol (a reducing agent). On the other hand, 10 mM dithiotreitol did not reverse ALA-D inhibition by a higher concentration of EDTA (100 microM). Accordingly, 2,3-dimercaptopropanol appears to inhibit ALA-D through a mechanism similar to that of low EDTA concentrations. Neither oxidized 2,3-dimercaptopropanol nor reactive oxygen species appeared to contribute for ALA-D inhibition by reduced 2,3-dimercaptopropanol. Taken together, these results suggest that 2,3-dimercaptopropanol inhibits ALA-D by chelating Zn2+ from a labile site that is involved in maintaining enzyme sulfhydryl groups in a reduced state. This site is compatible with the ZnB or Zn beta previously described in mammalian and bacterial ALA-D.

This publication has 25 references indexed in Scilit: