Differential-Stäckel matrices

Abstract
We show that additive separation of variables for linear homogeneous equations of all orders is characterized by differential-Stäckel matrices, generalizations of the classical Stäckel matrices used for multiplicative separation of (second-order) Schrödinger equations and additive separation of Hamilton–Jacobi equations. We work out the principal properties of these matrices and demonstrate that even for second-order Laplace equations additive separation may occur when multiplicative separation does not

This publication has 3 references indexed in Scilit: