2D Fokker-Planck models of rotating clusters

Abstract
Globular clusters rotate significantly, and with the increasing amount of detailed morphologicaland kinematical data obtained in recent years on galactic globular clusters many interesting features show up. We show how our theoretical evolutionary models of rotating clusters can be used to obtain fits, which at least properly model the overall rotation and its implied kinematics in full 2D detail (dispersions, rotation velocities). Our simplified equal mass axisymmetric rotatingmodel provides detailed two-dimensional kinematical and morphological data for star clusters. The degree of rotation is not dominant in energy, but also non-negligible for the phase space distribution function, shape and kinematics of clusters. Therefore the models are well applicable for galactic globular clusters. Since previously published papers on that matter by us made it difficult to do detailed comparisons with observations we provide a much more comprehensive and easy-to-use set of data here, which uses as entries dynamical age and flattening of observed cluster andthen offers a limited range of applicable models in full detail. The method, data structure and some exemplary comparison with observations are presented. Future work will improve modelling anddata base to take a central black hole, a mass spectrum and stellar evolution into account.

This publication has 0 references indexed in Scilit: